Kähler–Einstein metric - definição. O que é Kähler–Einstein metric. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Kähler–Einstein metric - definição


Kähler–Einstein metric         
KÄHLER MANIFOLD SATISFYING THE VACUUM EINSTEIN EQUATIONS
Einstein-Kähler metric; Kahler-Einstein metric; Kaehler-Einstein metric; Kähler-Einstein metric; Kaehler–Einstein metric; Kahler–Einstein metric; Einstein–Kähler metric; Kähler–Einstein manifold
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric.
Einstein manifold         
RIEMANNIAN OR PSEUDO-RIEMANNIAN DIFFERENTIABLE MANIFOLD WHOSE RICCI TENSOR IS PROPORTIONAL TO THE METRIC
Einsteinian manifold; Einstein metric; Einstein space; Kähler-Einstein manifold; Kahler-Einstein manifold; Kaehler-Einstein manifold; Einstein metrics
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations (with cosmological constant), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds (including the four-dimensional Lorentzian manifolds usually studied in general relativity).
Constant scalar curvature Kähler metric         
KÄHLER MANIFOLD WHOSE SCALAR CURVATURE IS CONSTANT
CscK manifold; CscK metric; CscK; Constant scalar curvature Kahler metric; Constant scalar curvature Kaehler metric; Constant scalar curvature Kähler manifold; Constant scalar curvature Kahler manifold; Extremal Kähler metric; Holomorphy potential
In differential geometry, a constant scalar curvature Kähler metric (cscK metric), is (as the name suggests) a Kähler metric on a complex manifold whose scalar curvature is constant. A special case is Kähler–Einstein metric, and a more general case is extremal Kähler metric.